Rules and Regulations for PhD Qualifying Exam in Computer Engineering Department (Updated: January 27, 2021)

- I. The PhD Qualifying Exam consists of a written part and an oral part.
- II. The Written part of the Exam consists of two sub-parts (A & B):

A. <u>CORE (MATH + THEORY or SYSTEMS):</u>

MATHEMATICS:

MATH 163	Discrete Mathematics
MATH 241	Linear Algebra and Ordinary Differential Equations
MATH 322	Probability and Statistics
MATH 373	Numerical Analysis for Engineers

THEORY:

CMPE318	Programming Language Design
CMPE231 + CMPE371	Data Structures + Analysis of Algorithms
CMPE471	Automata Theory

SYSTEMS:

CMPE224 + CMPE324	Digital logic Systems + Computer Architecture
CMPE242	Operating Systems
CMPE344	Computer Networks

B. SPECIALIZATIONS (One of the following 4 fields)

B1- NETWORKS AND SYSTEMS

- a. Data Networks (Layering, switching, point-to-point protocols, multiple access, routing, flow control, wireless networks)
- b. Performance Analysis (Markov chains, queuing theory, fluid models, rate control, bounds, effective capacity)
- c. Simulation (Random variable generation, discrete0event simulation, statistical analysis and validation, variance reduction, Markov chain Monte Carlo methods)

B1 - Related graduate coursework:

- CMPE 516 (3,0) 3 Advanced Topics in Microprocessors
- CMPE 521 (3,0) 3 Advanced Computer Architecture
- CMPE 541 (3,0) 3 Network and Distributed Systems
- CMPE 542 (3,0) 3 Advanced Networking
- CMPE 543 (3,0) 3 Randomized Algorithms
- CMPE 545 (3,0) 3 Broadband Networks
- CMPE 547 (3,0) 3 Queuing Networks for Computer Applications
- CMPE 548 (3,0) 3 Analysis of Computer Communication Networks
- CMPE 549 (3,0) 3 Personal Wireless Communication
- CMPE 576 (3,0) 3 Advanced Systems Simulation

B2 – DISTRIBUTED SYSTEMS AND PROGRAMMING

- a. Distributed Systems
- b. Programming languages
- c. Parallel programming

B2 - Related graduate coursework:

CMPE 522 (3,0) 3 Distributed Shared Memory Multiprocessing

CMPE 523 (3,0) 3 Parallel and Distributed Programming

- CMPE 543 (3,0) 3 Operating Systems theory
- CMPE 576 (3,0) 3 Advanced System Simulation
- CMPE 581 (3,0) 3 Modeling Multimedia Systems

CMPE 582 (3,0) 3 Object Oriented Programming and Graphical User Interfaces in Java

CMPE 583 (3,0) 3 Web Semantics

B3 – INFORMATION SYSTEMS

- a. Databases Cryptography and security
- b. Logic and Logic Programming
- c. Fuzzy Systems

B3 - Related graduate coursework:

- CMPE 531 (3,0) 3 Logic Programming
- CMPE 532 (3,0) 3 Constraint Programming
- CMPE 534 (3,0) 3 Automated Deduction
- CMPE 535 (3,0) 3 Knowledge Engineering
- CMPE 537 (3,0) 3 Evolutionary Neuro-Fuzzy Systems
- CMPE 552 (3,0) 3 Database and File Security

CMPE 553 (3,0) 3 Cryptography and Network Security

- CMPE 554 (3,0) 3 Natural Language Processing
- CMPE 556 (3,0) 3 Information Retrieval
- CMPE 558 (3,0) 3 Data Mining
- CMPE 564 (3,0) 3 Ensemble Learning
- CMPE 572 (3,0) 3 Digital Forensics
- CMPE 586 (3,0) 3 Software Implementation of Fuzzy Systems

B4 – COMPUTATIONAL INTELLIGENCE

- a. Linear and Nonlinear Programming (problem formulation and **derivative-based** solution techniques)
- b. Meta-heuristic Algorithms (**derivative-free** learning techniques including genetic methods, taboo search and neural networks)
- c. Machine Learning Techniques (pattern recognition, NLP, AI)

B4 - Related graduate coursework:

- CMPE 528 (3,0) 3 Computational Principles of Robotics
- CMPE 532 (3,0) 3 Constraint Programming
- CMPE 533 (3,0) 3 Artificial Intelligence
- CMPE 535 (3,0) 3 Knowledge Engineering
- CMPE 537 (3,0) 3 Evolutionary Neuro-Fuzzy Systems
- CMPE 536 (3,0) 3 Meta-heuristics
- CMPE 538 (3,0) 3 Evolutionary Multi-Objective Optimization
- CMPE 539 (3,0) 3 Multiagent Systems
- CMPE 554 (3,0) 3 Natural Language Processing
- CMPE 556 (3,0) 3 Information Retrieval
- CMPE 558 (3,0) 3 Data Mining
- CMPE 561 (3,0) 3 Neural Networks
- CMPE 562 (3,0) 3 Pattern Recognition
- CMPE 564 (3,0) 3 Ensemble Learning
- CMPE 572 (3,0) 3 Digital Forensics
- CMPE 573 (3,0) 3 Computer Vision
- CMPE 574 (3,0) 3 Biometrics
- CMPE 584 (3,0) 3 Evolutionary Computation and Programming
- CMPE 586 (3,0) 3 Software Implementation of Fuzzy systems

Note: It is the responsibility of the student and his/her supervisor to choose a specialization group at the beginning of the PhD study. However only if not enough number of courses are offered from a group during the student's course-taking-period, the missing courses will be selected by the thesis supervisor.

III. GRADING POLICY AND PASSING GRADE

Grading Policy:

- A) There will be 5 questions from CORE courses (2 from Math courses + 3 from Theory or Systems)
- B) There will be 4 questions from SPECIALIZATION courses

Passing Grade:

The following logic will be used to determine the passing grade:

IF the candidate gets at least 60% average from CMPE undergraduate core part THEN

IF the candidate gets an average of (60/100 **OR** above from <u>Core</u> courses) **AND** (70/100 **OR** above from <u>Specialization</u> courses) **THEN**

IF the candidate gets an overall grade \geq 65 (0.4 times <u>Core</u> courses average grade + 0.4

times Specialization courses average grade + 0.2 times Oral part average grade) THEN

The candidate PASSES

ELSE The candidate FAILS

In case of failing, the student will repeat the exam in the next semester and will be responsible from all parts.